# 100 Lesson Plans And Ideas For Teaching Math

Teaching Math is a great process, since it is oriented towards applications and practical thinking. The versatility of a teacher with innumerable innovative ideas on hand paves way for success in teaching Math. Or else, the classes become boring and the teacher could not get across his or her ideas successfully.

Why there is a need for 100 Math plans and ideas?

It is the basic grasping capability of the targeted students that a teacher needs to keep in mind while preparing for a Math class. When one set of ideas suits the needs of a particular set of students,Guest Posting it could be something else that would appeal to yet another group. So, keeping different ideas in store is always good for a Math teacher, not to run short of the stock in the middle of the class. Hence,there is a necessity for lots of lesson plans and ideas to be stored by a teacher for Math. Here are 100 Math plans and ideas for the benefit of Math teachers.

Number System

Numbers that are not rational are called irrational numbers and students understand that every number has a decimal expansion. Teachers could show how decimal expansion repeats itself with examples. They could make students convert a repeating decimal expansion into a rational number with black board examples. Sounds of PI (Numberphile’s resources) could be an activity to explain the concept.

Function

Function is a rule and it assigns exactly one output to each input. The graph of the Function is the set off ordered pairs having one input with the corresponding output. Function can be compared to a machine to explain the concept of input and output and the relationship between input and output could be explained in simple tabular columns. A Math teacher could find easy examples for Function like Trigonometry Function to make the students understand the concept easily. 21 Century Lessons: A Boston Teachers Union Initiative offers hand outs and presentations for this lesson.

Students know and apply the properties of integer exponents for generating equivalent numerical expressions. An activity like gallery walk could motivate students to observe patterns in algebraic expressions. They could use their observations in classroom work like applying the properties of integer exponents for simplifying expressions. Integer Exponents and Scientific Notation Lesson plans by My Favorite Resources offer help from explaining the concept.

Ratios and Proportional relationships

Students understand ratio concepts and use ratio language to describe a ratio relationship between two ratio quantities. Teachers could advise students to use reasoning about division and multiplication for solving ratio and rating problems about quantities. Students extend the columns of multiplication tables and analyze simple drawings which indicate the relative size of quantities. By doing so, they expand their ideas of multiplication and division and connect them to ratios and rates. 21 Century Lessons: A Boston Teachers Union Initiative offers lesson plans for this concept.

Operations and Algebraic Thinking

Students learn to use parenthesis and brackets in numerical expressions and they evaluate expressions with these symbols. Teachers could assign word problems to students and ask them to write a numerical with a variable for each word problem. The students need to explain the numerical expressions correctly using the rule for order of operations. Building better classrooms: Cleveland Teachers Union provides support for teaching this concept.

Arithmetic with Polynomials and Rational Expressions

Students understand that polynomials form a system which is analogous to the integers. They learn to add, subtract and multiply polynomials. Teachers could bring an analogy between multiplying and dividing polynomial rational expressions and multiplying and dividing Fractions. Both can be reduced and thus students are able to understand the concept in a natural way. Algebra2go provides resources for this lesson.

Seeing structure in Expressions

Students learn to interpret parts of an expression like terms and factors. They also learn to interpret complicated expressions. Asking students questions regarding structure in expressions, collecting answers, drawing conclusions and then coming about the real concept could be an excellent warm up with insights about the topic from the students’ side.

Creating equations

Students learn to create equations and inequalities in one variable and use these equations and inequalities to solve problems. Students could start with translating open sentences into algebraic equations and get ahead with solving problems. Sentences and expressions could be given in tabular columns for matching, asking students to select the right expressions for the sentences. YourMathGal videos are useful resource for this lesson.

Reasoning with Equations and inequalities

Students understand solving equation as the process of reasoning. They try to explain the reasoning behind solving the equation. Suggesting viable arguments for justifying solution methods could make teacher’s task easy in explaining the concept. Algebra2go provides lessons for this concept.

NBT Number and operation in base 10

Students understand the place value system. They understand that in a multi digit number, a digit in one place denotes 10 times. Teachers could use Place Value Table with columns up to ten thousand for teaching this concept. Share my Lesson Math Team provides resource for this concept.

Quantities

Students reason quantitatively and use units to understand problems. Students could visit medical shops and understand how people use Math quantities for preparing medicine. stembite gives out resources for explaining this lesson.

Building Functions

Students learn to build a Function which models a relationship between two quantities. By building a toy staircase with blocks, teachers could easily explain building Functions. stembite provides plans for this lesson.

Counting and cardinality

Students know number names and count to 100 by tens and ones. Nursery rhymes and songs are the best resource for making students learns counting with ease. tmaerz provides resources for this lesson

Students learn to construct linear, quadratic and exponential models and know how to compare them. Students could use manipulative like straw and matchsticks to create geometric patterns. They will form linear, quadratic and exponential models based on the properties (like perimeter, area etc) of the geometric patterns created with the manipulative. Again, stembite is a good resource for explaining this lesson.

Interpreting Functions

Students understand the concept of a Function and they learn to use a Function notation. They understand that a function from one set (domain) to another set (range) assigns each element of the domain one element of the range. Graphing and evaluating piecewise function with the use of calculator could help students pick up the concept with ease. Samwelli’s resources are useful in this context.

Reason with Shapes and their Attributes

Students learn to distinguish between defining attributes (like triangles with three sides) and non defining attributes (like overall size, color). Teachers could use shape sheets and BLM to explain triangles. Students could circle the triangles in the sheet and understand their attributes. jvargo08 offers resources for this lesson.

Reason with Shapes and Attributes

Students understand that shapes in different categories share attributes and attributes that are shared define a larger category (like quadrilateral being a category defined with the shared attribute of four sides of a rectangle or rhombus). Students recognize rhombus, squares and rectangles as examples of quadrilateral from the figures presented and understand how they share the attributes. Share My Lesson Math Team provides plans for this lesson.

Drawing and identifying lines and angles

Students learn to draw lines, rays, line segments, angles and parallel and perpendicular lines. Pattern blocks can be used by students for identifying the above mentioned geometric shapes. They could create webs from yarn and notice all the geometric shapes in those webs. Building Better Classrooms: Cleveland Teachers Union resources are useful for this lesson.

Graph Points on the coordinate Plane to solve problems

Students learn to use graph points on the coordinate plane to solve mathematical and real-world problems. Coordinate Grid Geoboards and Coordinate Grid Swap etc could be used to explain this lesson. nrich maths offers resource for this lesson.

Classifying two dimensional figures into categories

Students learn to classify two dimensional figures into categories on the basis of their properties (like all rectangles have 4 right angles and squares being rectangles have four right angles). Drawing two different quadrilaterals and explaining their similarities and differences could be a possible activity for students to understand the concept. nrich maths gives activity for this concept

Drawing, constructing and describing geometrical figures

Students solve problems through scale drawings of geometric figures. They learn to compute lengths and areas from scale drawings. A visit to a zoo for viewing all animal enclosures could be an interesting activity which could be turned to scale drawing measurements of the zoo as a classroom activity afterwards. youngrunner30 provides activity for this lesson.

Solving mathematical and real life problems using area, surface area, angle measure and volume

Students learn the formula for circumference and area of a circle and use them for solving problems. Students use hoops of different sizes to understand geometry concepts like area and circumference and gradually learn to solve problems. dsuh 2 has lesson plan for this lesson.

Understanding congruence and similarity

Students understand congruence and similarity using transparencies, physical models or geometry software. Illustrated multiple choice questions with answers could help teachers refresh the previous session and get students into the present one without difficulty. Students experimentally verify the properties of reflections, rotations and translations in this chapter. My Favorite Resources provides lesson plan for this concept.

Pythagorean Theorem

This entry was posted in Uncategorized and tagged , , , , , , , , . Bookmark the permalink.